Get Started
Examples
Mailing List
Get Cusp
Main Page
Modules
Classes
Files
All
Classes
Files
Functions
Variables
Groups
Pages
cg_m.cu
#include <
cusp/hyb_matrix.h
>
#include <
cusp/monitor.h
>
#include <
cusp/gallery/poisson.h
>
#include <
cusp/krylov/cg_m.h
>
// where to perform the computation
typedef
cusp::device_memory MemorySpace;
// which floating point type to use
typedef
float
ValueType;
int
main(
void
)
{
// create an empty sparse matrix structure (HYB format)
cusp::hyb_matrix<int, ValueType, MemorySpace>
A;
// create a 2d Poisson problem on a 10x10 mesh
cusp::gallery::poisson5pt
(A, 10, 10);
// allocate storage for solution (x) and right hand side (b)
size_t
N_s = 4;
cusp::array1d<ValueType, MemorySpace>
x(A.num_rows*N_s, ValueType(0));
// TODO replace with array2d when cg_m supports it
cusp::array1d<ValueType, MemorySpace>
b(A.num_rows, ValueType(1));
// set sigma values
cusp::array1d<ValueType, MemorySpace>
sigma(N_s);
sigma[0] = ValueType(0.1);
sigma[1] = ValueType(0.5);
sigma[2] = ValueType(1.0);
sigma[3] = ValueType(5.0);
// set stopping criteria:
// iteration_limit = 100
// relative_tolerance = 1e-6
cusp::monitor<ValueType>
monitor(b, 100, 1e-6, 0,
true
);
// solve the linear systems (A + \sigma_i * I) * x = b for each
// sigma_i with the Conjugate Gradient method
cusp::krylov::cg_m
(A, x, b, sigma, monitor);
return
0;
}
Generated for CUSP by
1.8.6
© 2014 NVIDIA Corporation